
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 24 – Sorting

Prof. Jeremy Dixon

Based on slides from previous iterations of the course

www.umbc.edu

Surveys
• Blackboard Survey – worth 1% of your final

grade. Take a few minutes to complete it.
– Due Sunday, December 6th

• SCEQ – provides feedback about instructors
and the course itself

• BRAID Survey – December/January version
– You should receive an email link

www.umbc.edu

Last Class We Covered
• Searching

– Linear search
– Binary search

• Asymptotic Performance
– How fast an algorithm “runs”
– Why certain algorithms are “better” than others

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives
• To learn about sorting algorithms

– Selection Sort
– Bubble Sort
– Quick Sort
– Radix Sort

• To examine which of these algorithms is
best for different sorting situations

• Surveys

www.umbc.edu

Sorting

www.umbc.edu

Sorting Algorithms
• Sorting algorithms put the elements of

a list in a specific order

• A sorted list is necessary to be able
to use certain other algorithms

• Like binary search!
– If sorted once, we can search many, many times

www.umbc.edu

Sorting Algorithms
• There are many different ways to sort a list
• What method would you use?
• Now imagine you can only look at

at most two elements at a time

• Computer science has a number of
commonly used sorting algorithms

www.umbc.edu

Selection Sort

www.umbc.edu

Selection Sort Algorithm
• Here is a simple way of sorting a list:

1. Find the smallest number in a list
2. Move that to the end of a new list
3. Repeat until the original list is empty

www.umbc.edu

Selection Sort Run Time
• What is the Big Oh of finding the lowest number

in a list?

• For a list of size N, what is the worst case
number of elements you’d have to look
through to find the min?

• N

www.umbc.edu

Selection Sort Run Time
• For a list of size N, how many times would we

have to find the min to sort the list?
• N

• What is the Big Oh of this sorting algorithm?
• O(N2)

www.umbc.edu

Bubble Sort

www.umbc.edu

Bubble Sort Algorithm
• Let’s take a look at another sorting method!

1. We look at the first pair of items in the list, and if the
first one is bigger than the second one, we swap them

2. Then we look at the second and third one and put
them in order, and so on

3. Once we hit the end of the list, we start over at the
beginning

4. Repeat until the list is sorted!

www.umbc.edu

Bubble Sort Example
[4, 8, 1, 10, 13, 14, 6]

First pass:
4 and 8 are in order
8 and 1 should be swapped:
[4, 1, 8, 10, 13, 14, 6]

8 and 10 are in order
10 and 13 are in order
13 and 14 are in order
6 and 14 should be swapped:
[4, 1, 8, 10, 13, 6, 14]

www.umbc.edu

Bubble Sort Example (Cont)
[4, 1, 8, 10, 13, 6, 14]

Second pass:
4 and 1 should be swapped:
[1, 4, 8, 10, 13, 6, 14]

4 and 8 are in order
8 and 10 are in order
10 and 13 are in order
13 and 6 should be swapped:
[1, 4, 8, 10, 6, 13, 14]
13 and 14 are in order

www.umbc.edu

Bubble Sort Example (Cont)
[4, 1, 8, 10, 13, 6, 14]

Second pass:
4 and 1 should be swapped:
[1, 4, 8, 10, 13, 6, 14]

4 and 8 are in order
8 and 10 are in order
10 and 13 are in order
13 and 6 should be swapped:
[1, 4, 8, 10, 6, 13, 14]
13 and 14 are in order

www.umbc.edu

Bubble Sort Example (Cont)
[1, 4, 8, 10, 6, 13, 14]

Third pass:
10 and 6 should be swapped:
[1, 4, 8, 6, 10, 13, 14]

Fourth pass:
8 and 6 should be swapped:
[1, 4, 6, 8, 10, 13, 14]

www.umbc.edu

Bubble Sort Run Time
• For a list of size N, how much work do we do for

a single pass?
– N

• How may passes will we have to do?
– N

• What is the Big Oh of Bubble Sort?
– O(N2)

www.umbc.edu

Bubble Sort Code
def bubbleSort(alist):

for passnum in range(len(alist)-1,0,-1):
for i in range(passnum):

if alist[i]>alist[i+1]:
temp = alist[i]
alist[i] = alist[i+1]
alist[i+1] = temp

alist = [54,26,93,17,77,31,44,55,20]
bubbleSort(alist)
print(alist)

www.umbc.edu

Quicksort

www.umbc.edu

Quicksort Algorithm
• Here’s another method:
1. Start with the number on the far right
2. Put everything less than that number on

the left of it and everything greater than it
on the right of it

3. Quicksort the left side and the right side

• Does this method remind you of anything?

www.umbc.edu

Quicksort Run Time
• For a list of size N, how many steps does it take

to move everything less than the last number to
the left and everything greater than the last
number to the right?

• N

www.umbc.edu

Quicksort Run Time
• How many times with the algorithm divide the

list in half?
• lg(N)

• What is the Big Oh of Quicksort?
• O(N lg(N))

www.umbc.edu

Quicksort Code
def quickSort(alist):

quickSortHelper(alist,0,len(alist)-1)

def quickSortHelper(alist,first,last):

if first<last:

splitpoint = partition(alist,first,last)

quickSortHelper(alist,first,splitpoint-1)

quickSortHelper(alist,splitpoint+1,last)

def partition(alist,first,last):

pivotvalue = alist[first]

leftmark = first+1

rightmark = last

done = False

while not done:

while leftmark <= rightmark and alist[leftmark] <= pivotvalue:

leftmark = leftmark + 1

while alist[rightmark] >= pivotvalue and rightmark >= leftmark:

rightmark = rightmark -1

if rightmark < leftmark:

done = True

else:

temp = alist[leftmark]

alist[leftmark] = alist[rightmark]

alist[rightmark] = temp

temp = alist[first]

alist[first] = alist[rightmark]

alist[rightmark] = temp

return rightmark

alist = [54,26,93,17,77,31,44,55,20]

quickSort(alist)

print(alist)

www.umbc.edu

Radix Sort

www.umbc.edu

Improving Run Time
• Most of the time, O(Nlg(N)) is the best we

can do for sorting
• However if we make the problem slightly

easier, we can do even better!

• Imagine we know for a fact that the list we are
sorting is only integers between 0 and 9

www.umbc.edu

Radix Sort Algorithm
• We can make a list of size 10 filled with zeroes
• The first element of this list represents the

number of zeroes we’ve seen so far in the list
we’re sorting

• The second number is the number of ones
we’ve seen, and so on

www.umbc.edu

Radix Sort Algorithm
• So say we have the list:

–[0, 3, 2, 1, 6, 8]
• We make our counting list:

– [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

• And iterate over the list we want to sort

www.umbc.edu

Radix Sort Algorithm
• The first number is a zero, so we add one to the

zeroth element of our counting list:
– [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

• The next number is a 3, so we add one to the
third element of our counting list:
– [1, 0, 0, 1, 0, 0, 0, 0, 0, 0]

www.umbc.edu

Radix Sort Algorithm
• Then 2:

– [1, 0, 1, 1, 0, 0, 0, 0, 0, 0]

• Then 1:
– [1, 1, 0, 1, 0, 0, 0, 0, 0, 0]

• When we’re done, the list looks like this:
– [1, 1, 1, 1, 0, 0, 1, 0, 1, 0]

www.umbc.edu

Radix Sort Algorithm
• For an index i, we know that if
countList[i] == 1, there was
one i in the original list

• One pass over the counting list to figure out
which numbers were there and we’ve sorted it!

www.umbc.edu

Radix Sort Run Time
• How many operations do we need to do to fill

out our counting list with zeros?
– N

• How many operations do we need to do to fill
out our counting list with the right values?
– N

www.umbc.edu

Radix Sort Run Time
• How many operations do we need to do to

reconstruct our sorted list?
– N

• This gives us a total run time of 3N operations
– So our final run time is simply
– O(N)

www.umbc.edu

Radix Sort Code
def radixsort(aList):

RADIX = 10
maxLength = False
tmp , placement = -1, 1

while not maxLength:
maxLength = True
declare and initialize buckets
buckets = [list() for _ in range(RADIX)]

split aList between lists
for i in aList:

tmp = i / placement
buckets[tmp % RADIX].append(i)
if maxLength and tmp > 0:
maxLength = False

empty lists into aList array
a = 0
for b in range(RADIX):

buck = buckets[b]
for i in buck:
aList[a] = i
a += 1

move to next digit
placement *= RADIX

www.umbc.edu

Python Built-in sort()
• Python’s built-in sorting method sort()

uses a hybrid sort called a timsort which was
invented by Tim Peters in 2002 for use with
Python

• http://bugs.python.org/file4451/timsort.txt

http://bugs.python.org/file4451/timsort.txt

www.umbc.edu

Any Other Questions?

www.umbc.edu

General Announcements
• Lab 12 this week – last lab of the semester!

• Project 2 is out
– Due by Tuesday, December 8th at 8:59:59 PM
– Do NOT procrastinate!

• Next Class: Review for the Final

www.umbc.edu

Announcements: Final Exam
• Final Exam will held be on Friday,

December 11th from 3:30 to 5:30 PM
• Being held in three separate rooms

• Section 1 (Gibson, MW @ 1) – CHEM 030
• Section 7 (Dixon, TR @ 5:30) – CHEM 030
• Section 13 (Dixon, TR @ 10) – CHEM 030
• Section 19 (Morawski, MW @ 4) – PAHB 132
• Section 25 (Gibson, TR @ 4) – PHYS 101

• Make sure you go to the correct room!

www.umbc.edu

Announcements: Surveys
• The second survey will be released and

announced on Blackboard shortly
– This is 1% of your grade, and is your chance to give

feedback on your experience with the course

• Now, we will be doing the in-class SCEQ (Student
Course Evaluation Questionnaire)
– This is an important metric for assessment

www.umbc.edu

SCEQ Details
• Use only a #2 pencil
• Catalog number should be in top left corner
• Fill in the number of credits earned towards

your degree at the beginning of the semester
– If less than 100, fill the two right-most columns
– If less than 10, fill the right-most column

• Fill in your cumulative GPA
– Fill unknown digits with “0”

www.umbc.edu

SCEQ Details
• Fill in your officially declared major

– If you haven’t declared a major, enter “00”
– If yours isn’t listed, raise your hand and I’ll tell you

Computer Sci 63 Applied Physics 62
Computer Eng 07 Atmo Physics 41

Information Sys 83 Eng (General) 76
Math 61 Chemical Eng 37

Bioinformatics 98 Biology 55

www.umbc.edu

SCEQ Details
• For this course, fill out the Scantron (using a

pencil), sections:
– A (General)
– B (Lecture) – “Instructor A” column only

– D (Laboratory)
• Fill out the Blue sheet

– Additional comments can be written on the back

• Bring completed sheets to the front

	CMSC201� Computer Science I for Majors��Lecture 24 – Sorting
	Surveys
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	Sorting
	Sorting Algorithms
	Sorting Algorithms
	Selection Sort
	Selection Sort Algorithm
	Selection Sort Run Time
	Selection Sort Run Time
	Bubble Sort
	Bubble Sort Algorithm
	Bubble Sort Example
	Bubble Sort Example (Cont)
	Bubble Sort Example (Cont)
	Bubble Sort Example (Cont)
	Bubble Sort Run Time
	Bubble Sort Code
	Quicksort
	Quicksort Algorithm
	Quicksort Run Time
	Quicksort Run Time
	Quicksort Code
	Radix Sort
	Improving Run Time
	Radix Sort Algorithm
	Radix Sort Algorithm
	Radix Sort Algorithm
	Radix Sort Algorithm
	Radix Sort Algorithm
	Radix Sort Run Time
	Radix Sort Run Time
	Radix Sort Code
	Python Built-in sort()
	Any Other Questions?
	General Announcements
	Announcements: Final Exam
	Announcements: Surveys
	SCEQ Details
	SCEQ Details
	SCEQ Details

